Safety: Radiation Exposure in X-ray Examinations

This information is reviewed by a physician with expertise in the area presented and is further reviewed by committees from the American College of Radiology (ACR) and the Radiological Society of North America (RSNA), comprising physicians with expertise in several radiologic areas.

What are x-rays and what do they do?
X-rays are forms of radiant energy, like light or radio waves. Unlike light, x-rays can penetrate the body, which allows a radiologist to produce pictures of internal structures. The radiologist can view these on photographic film or on a TV or computer monitor.
X-ray examinations provide valuable information about your health and play an important role in helping your doctor make an accurate diagnosis. In some cases x-rays are used to assist with the placement of tubes or other devices in the body or with other therapeutic procedures.

Measuring radiation dosage
The scientific unit of measurement for radiation dose, commonly referred to as effective dose, is the millisievert (mSv). Other radiation dose measurement units include rad, rem, Roentgen, Sievert, and Gray.
Because different tissues and organs have varying sensitivity to radiation exposure, the actual radiation risk to different parts of the body from an x-ray procedure varies. The term effective dose is used when referring to the radiation risk averaged over the entire body. The effective dose accounts for the relative sensitivities of the different tissues exposed. More importantly, it allows for quantification of risk and comparison to more familiar sources of exposure that range from natural background radiation to radiographic medical procedures.
Naturally-occurring “background” radiation exposure
We are exposed to radiation from natural sources all the time. The average person in the U.S. receives an effective dose of about 3 mSv per year from naturally occurring radioactive materials and cosmic radiation from outer space. These natural “background” doses vary throughout the country.
People living in the plateaus of Colorado or New Mexico receive about 1.5 mSv more per year than those living near sea level. The added dose from cosmic rays during a coast-to-coast round trip flight in a commercial airplane is about 0.03 mSv. Altitude plays a big role, but the largest source of background radiation comes from radon gas in our homes (about 2 mSv per year). Like other sources of background radiation, exposure to radon varies widely from one part of the country to another.
To explain it in simple terms, we can compare the radiation exposure from one chest x-ray as equivalent to the amount of radiation exposure one experiences from our natural surroundings in 10 days.

Following are comparisons of effective radiation dose with background radiation exposure for several radiological procedures described within this Web site:

Safety: Radiation Exposure in X-ray Examinations; 2 of 4 July 8, 2009
RadiologyInfo: Copyright © 2009 Radiological Society of North America (RSNA)
For this procedure:
Your effective radiation dose is:
Comparable to natural background radiation for:

Abdominal region:
Computed Tomography (CT)-Abdomen & Pelvis
10 mSv
3 years
Computed Tomography (CT)-Body
10 mSv
3 years
Computed Tomography (CT)-Colonography
10 mSv
3 years
Intravenous Pyelogram (IVP)
3 mSv
1 year
Radiography-Lower GI Tract
8 mSv
3 years
Radiography-Upper GI Tract
6 mSv
2 years
1.5 mSv
6 months
0.001 mSv
Less than 1 day
Central Nervous system:
Computed Tomography (CT)-Head
2 mSv
8 months
Computed Tomography (CT)-Spine
6 mSv
2 years
4 mSv
16 months
Computed Tomography (CT)-Chest
7 mSv
2 years
0.1 mSv
10 days
Children’s imaging:
Voiding Cystourethrogram
5-10 yr. old: 1.6 mSv
6 months
Infant: 0.8 mSv
3 months
Face and neck:
Computed Tomography (CT)-Sinuses
0.6 mSv
2 months
Cardiac CT for Calcium Scoring
3 mSv
1 year
Men’s Imaging:
Bone Densitometry (DEXA)
0.001 mSv
Less than 1 day
Women’s Imaging:
Bone Densitometry (DEXA)
0.001 mSv
Less than 1 day
0.7 mSv
3 months
1 mSv
4 months
0.7 mSv
3 months

July 8, 2009 Safety: Radiation Exposure in X-ray Examinations; 3 of 4
Copyright © 2009 Radiological Society of North America (RSNA) RadiologyInfo:

X-ray safety
As with other medical procedures, x-rays are safe when used with care. Radiologists and x-ray technologists have been trained to use the minimum amount of radiation necessary to obtain the needed results. The amount of radiation used in most examinations is very small and the benefits greatly outweigh the risk of harm.
X-rays are produced only when a switch is momentarily turned on. As with visible light, no radiation remains after the switch is turned off.

X-rays over your lifetime
The decision to have an x-ray exam is a medical one, based on the likelihood of benefit from the exam and the potential risk from radiation. For low dose examinations, usually those that involve only films taken by a technologist, this is generally an easy decision. For higher dose exams such as computed tomography (CT) scans and those involving the use of contrast materials (dyes) such as barium or iodine, the radiologist may want to consider your past history of exposure to x-rays. If you have had frequent x-ray exams and change healthcare providers, it is a good idea to keep a record of your x-ray history for yourself. This can help your doctor make an informed decision. It is also very important to tell your doctor if you are pregnant before having an exam that involves the abdomen or pelvic region.

Pregnancy and x-rays
As with any aspect of medical care, knowing that a patient is or could be pregnant is important information. Pregnancy, for example, might explain certain symptoms or medical findings. When a pregnant patient is ill or injured, the physician will carefully select medications to avoid potential risks to the developing child. This is also true of x-rays.
While the vast majority of medical x-rays do not pose a critical risk to a developing child, there may be a small likelihood of causing a serious illness or other complication. The actual risk depends on how far along the pregnancy is and on the type of x-ray. Ultrasound studies, for example, don’t use x-rays and have never demonstrated any potential risk to pregnancy. X-ray studies of the head, arms, legs and chest do not usually expose the baby directly to x-rays and typically the technologist who takes the x-rays will implement special precautions to ensure that the baby of a pregnant patient is not directly exposed.
Sometimes patients need examinations of the abdomen or pelvis while they are pregnant.
When studies of the abdomen or pelvis are required, the physician may prefer to order a different type of exam for a pregnant patient or reduce the number of x-rays from that which are normally acquired.
Therefore it is important that you inform your physician or the x-ray technologist about your reproductive status before the x-ray study is performed.
Most standard x-ray examinations of the abdomen are not likely to pose a serious risk to the child. Some abdominal and pelvic studies such as CT deliver greater amounts of radiation to a developing pregnancy. Informing the radiologist that you are or might be pregnant is important so that your medical care can be planned with both you and your baby in mind. Remember, this is done to optimize medical care by reducing any potential risk.
Radionuclide exams, also known as nuclear medicine, use an x-ray-like radiation. The method of use, however, is quite different from x-rays and produce very different looking images. The same advice for informing your physician or the nuclear medicine technologist about any possible pregnancy before the examination begins is important.
However, in nuclear medicine another precaution is advised for women who are breast-feeding a child. Some of the pharmaceuticals that are used for the study can pass into the mother’s milk and subsequently the child will consume them. To avoid this possibility, it is important that a nursing mother inform her physician and the nuclear medicine technologist about this before the examination begins. Usually, you will be asked to discontinue breast-feeding for a short while, pump your breasts in the interim and discard the milk. Breast-feeding can often resume shortly afterwards.

Radiation dose from interventional radiology procedures
Interventional radiologic procedures use diagnostic-type imaging equipment to assist a physician in the treatment of a patient’s condition. These procedures frequently provide favorable medical results with minimal recovery time. In some cases these procedures avoid the need for conventional surgery or improve the prospects for a favorable outcome from surgery. As with any medical procedure, there are associated risks and the nature of these risks depend on the procedure.
With interventional radiology procedures using x-rays, the level of risk depends on the type of procedure because some use very little radiation, while complex procedures use much more.

Safety: Radiation Exposure in X-ray Examinations; 4 of 4 July 8, 2009
RadiologyInfo: Copyright © 2009 Radiological Society of North America (RSNA)

In general, the risk of developing a cancer from the exposure is not a major concern when compared to the benefits of the procedure. Many of the complex procedures, such as ones used to open a partially blocked blood vessel, repair a weak area of a bulging vessel, or to redirect blood flow through malformed vessels, use extensive radiation.
But such complex procedures are also frequently lifesaving in their benefit and the risks associated with the radiation are of secondary consideration. In very rare cases, some patients develop skin damage as a result of the procedure. As with any surgical procedure, these rare events are important possibilities to consider when procedures are difficult and extensive. Since the risk for such complications depends on the individual circumstances, the physician should discuss these possibilities with the patient as is appropriate.
Ultrasound imaging is sometimes used for interventional radiology procedures. Ultrasound uses acoustic radiation and, at current intensities, no risk is known to exist for this type of imaging procedure. Magnetic resonance imaging is used for other interventional radiology procedures. For these procedures, a careful screening is performed prior to admission to the scanner room. This screening is to make sure that you have not had previous medical or cosmetic procedures that might make the procedure hazardous.

Disclaimer: This information is copied from the RadiologyInfo Web site ( which is dedicated to providing the highest quality information. To ensure that, each section is reviewed by a physician with expertise in the area presented. All information contained in the Web site is further reviewed by an ACR (American College of Radiology) – RSNA (Radiological Society of North America) committee, comprising physicians with expertise in several radiologic areas. However, it is not possible to assure that this Web site contains complete, up-to-date information on any particular subject. Therefore, ACR and RSNA make no representations or warranties about the suitability of this information for use for any particular purpose. All information is provided “as is” without express or implied warranty. Please visit the RadiologyInfo Web site at to view or download the latest information. Note: Images are shown for illustrative purposes. Do not attempt to draw conclusions or make diagnoses by comparing these images to other medical images, particularly your own. Only qualified physicians should interpret images; the radiologist is the physician expert trained in medical imaging. Copyright © 2009 Radiological Society of North America, Inc. Send comments via email to:

Tags: , , , , ,

Leave a Comment